Cadherin-8 is required for the first relay synapses to receive functional inputs from primary sensory afferents for cold sensation.

نویسندگان

  • Sachihiro C Suzuki
  • Hidemasa Furue
  • Kohei Koga
  • Nan Jiang
  • Mitsuo Nohmi
  • Yuka Shimazaki
  • Yuko Katoh-Fukui
  • Minesuke Yokoyama
  • Megumu Yoshimura
  • Masatoshi Takeichi
چکیده

Classic cadherins, comprising multiple subtypes, mediate selective cell-cell adhesion based on their subtype-specific binding nature. Each subtype in the brain is expressed by restricted groups of functionally connected nuclei and laminas. However, whether each subtype has any specific role in neural circuitry remains largely unknown. Here, we show that cadherin-8 (cad8), a type-II classic cadherin, is important for cold sensation, whose circuitry is established by projection of sensory neurons into the spinal cord. Cad8 was expressed by a subset of neurons in the dorsal horn (DH) of the spinal cord, as well as by a small number of neurons in the dorsal root ganglia (DRGs), and the majority of cad8-positive DRG neurons coexpressed cold temperature/menthol receptor (TRPM8). We generated cad8 knock-out mice and analyzed lacZ markers expressed by the targeted cad8 locus using heterozygous mice. LacZ/cad8-expressing sensory neurons and DH neurons were connected together, and cad8 protein was localized around the synaptic junctions formed between them. This relation was, however, not disrupted in cad8-/- mice. We performed whole-cell patch-clamp recordings from DH neurons in spinal cord slices, in combination with menthol stimulation as a tool to excite central terminals of primary afferents expressing TRPM8. LacZ-expressing DH neurons exhibited fast and slow miniature EPSCs. Menthol selectively increased the frequency of the slow mEPSCs in cad8+/- slices, but this effect was abolished in cad8-/- slices. The cad8-/- mice also showed a reduced sensitivity to cold temperature. These results demonstrate that cad8 is essential for establishing the physiological coupling between cold-sensitive sensory neurons and their target DH neurons.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convergence of cranial visceral afferents within the solitary tract nucleus.

Primary afferent axons within the solitary tract (ST) relay homeostatic information via glutamatergic synapses directly to second-order neurons within the nucleus of the solitary tract (NTS). These primary afferents arise from multiple organ systems and relay multiple sensory modalities. How this compact network organizes the flow of primary afferent information will shape central homeostatic c...

متن کامل

Integration of Sensory Quanta in Cuneate Nucleus Neurons In Vivo

Discriminative touch relies on afferent information carried to the central nervous system by action potentials (spikes) in ensembles of primary afferents bundled in peripheral nerves. These sensory quanta are first processed by the cuneate nucleus before the afferent information is transmitted to brain networks serving specific perceptual and sensorimotor functions. Here we report data on the i...

متن کامل

Central Connectivity of Transient Receptor Potential Melastatin 8-Expressing Axons in the Brain Stem and Spinal Dorsal Horn

Transient receptor potential melastatin 8 (TRPM8) ion channels mediate the detection of noxious and innocuous cold and are expressed by primary sensory neurons, but little is known about the processing of the TRPM8-mediated cold information within the trigeminal sensory nuclei (TSN) and the spinal dorsal horn (DH). To address this issue, we characterized TRPM8-positive (+) neurons in the trigem...

متن کامل

Postsynaptic mechanisms govern the differential excitation of cortical neurons by thalamic inputs.

Thalamocortical (TC) afferents relay sensory input to the cortex by making synapses onto both excitatory regular-spiking principal cells (RS cells) and inhibitory fast-spiking interneurons (FS cells). This divergence plays a crucial role in coordinating excitation with inhibition during the earliest steps of somatosensory processing in the cortex. Although the same TC afferents contact both FS ...

متن کامل

Role of primary afferents in the developmental regulation of motor axon synapse numbers on Renshaw cells.

Motor function in mammalian species depends on the maturation of spinal circuits formed by a large variety of interneurons that regulate motoneuron firing and motor output. Interneuron activity is in turn modulated by the organization of their synaptic inputs, but the principles governing the development of specific synaptic architectures unique to each premotor interneuron are unknown. For exa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 27 13  شماره 

صفحات  -

تاریخ انتشار 2007